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Paths satisfying end point constraints
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Joint-Space Path

» a joint-space path is computed considering the joint variables
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Joint-Space Path Joint Angles

» linear joint-space path
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Constraints

» in the previous example we had two constraints for joint |:
%9, = 60
To, =270

» the simplest path satisfying these constraints is the straight
line path

» if we add more constraints then a straight line path may not
be able to satisfy all of the constraints
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Velocity constraints

» a common constraint is that the robot starts from a stationary

position and stops at a stationary positions

in other words, the joint velocities are zero at the start and end of

the movement
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Acceleration constraints

» for smooth motion, we might require that the acceleration at

the start and end of the motion be zero
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Satisfying the constraints

» given some set of constraints on a joint variable g our goal is
to find g(t) that satisfies the constraints

» there are an infinite number of choices for q(t)

it is common to choose “simple” functions to represent q(t)
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Satisfying the constraints with polynomials

» suppose that we choose g(t) to be a polynomial

» if we have n constraints then we require a polynomial with n
coefficients that can be chosen to satisfy the constraints

in other words, we require a polynomial of degree (n — 1)

g 2/112017



Satisfying the constraints with polynomials

» suppose that we have joint value and joint velocity constraints

q(to) = qo
q(tr) = 4y
q(to) = vy
q(tr) = vy

» we require a polynomial of degree 3 to represent q(t)
q(t) = a + bt + ct? + dt3

» the derivative of g(t) is easy to compute
g(t) = b + 2ct + 3dt?
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Satisfying the constraints with polynomials
» equating q(t) and §(t) to each of the constraints yields:
q(ty) = qo = a + bty + cté + dt;
q(tr) = qr = a + bty + ctf + dt?

Q(to) = Vo = b + ZCtO + 3dt5
Q(tf) = Uf =b+ Zth + 3dt]§

which is a linear system of 4 equations with 4 unknowns

(a,b,c,d)
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Example

» consider the following constraints where the robot is
stationary at the start and end of the movement

q(ty) =6(0) =10
q(t;) = 0(3) = 80
q(ty) =6(0) =0
q(tr)=63)=0
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Example: Joint angle
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Example: Joint velocity
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Example: Joint acceleration
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Satisfying the constraints with polynomials

» suppose that we have joint value, joint velocity, and joint
acceleration constraints

q(to) = qo
q(tr) = 4y
q(to) = vy
q(tr) = vy
G(to) = ay
G(tr) = ar
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Satisfying the constraints with polynomials
» we require a polynomial of degree 5 to represent q(t)

q(t) = a + bt + ct? + dt3 + et* + ft°

» the derivatives of g(t) are easy to compute
g(t) = b + 2ct + 3dt?* + 4et> + 5ft*
G(t) = 2c + 6dt + 12et? + 20ft3
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Satisfying the constraints with polynomials

» equating q(t), g(t),and §(t) to each of the constraints yields:

q(ty) = qo = a + bty + cté + dt;

q(tr) = qr = a + bty + ctf + dt?

G(ty) = vy = b + 2cty + 3dté

q(tr) = vf = b+ 2ct; + 3dt?

G(ty) = ag = 2¢ + 6dty + 12ets + 201t
i(tr) = ar = 2c + 6dty + 12etf + 201t}

which is a linear system of 6 equations with 6 unknowns

(a,b,c,d,e, f)
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Example

» consider the following constraints where the robot is
stationary at the start and end of the movement, and the joint
accelerations are zero at the start and end of the movement

q(to) = 6(0) = 10
q(t;) = 0(3) = 80
q(to) =6(0) =0
q(tr)=63)=0
G(to) = 6(0) =0
§(t;)=03) =0
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Example: Joint angle
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Example: Joint velocity
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Example: Joint acceleration
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